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We demonstrate magnetization auto-oscillations driven by pure spin currents in spin Hall nano-
oscillators based on NiFe/Pt bilayers. A substantial microwave signal power can be detected, even at
room temperature, indicating that a sizable spin wave amplitude is generated.
Spin torque ferromagnetic resonance measurements reveal that the generated auto-oscillation
frequency lies below the ferromagnetic resonance frequency of NiFe and is therefore well described
by a self-localized spin wave bullet mode. In addition, the effect of surface plasmon on spin Hall nano
oscillators will be discussed.

Biography:

Prior to joining Apple, Mojtaba worked at Western Digital Company and Zeiss corporation focused
on process quality, reliability tests and big data analysis for various MEMS devices, semiconductor,
optical and storage components.

He has received his PhD from the Department of Electrical Engineering at National University of
Singapore. His PhD thesis centered on magnetic devices for storage applications. Meanwhile he has
pursued several postdoc positions in Sweden, UCR, Singapore and Assistant professor at ASU in
areas of device fabrication, magnetoresistance components and module packaging.
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Multidimensional spectroscopy at low frequencies: 2D Raman-THz Spectroscopy

Extended abstract:

Collective low-frequency molecular motions play an important role in chemical reactivity and
determine the physical properties of condensed-phase molecular systems. These motions have
characteristic spectral features in the terahertz (THz) frequency range, from 0.1 to 10 THz (3 to 330
cm-1). However, the fast dynamics of these low-frequency modes result in the appearance of very
broad and blurred spectral features in one-dimensional (1D) spectra, limiting the amount of accessible
information that can be extracted from them. Twodimensional (2D) spectroscopy can reveal important
spectroscopic information about the broadening mechanism and coupling between different degrees
of freedom that remain hidden in conventional 1D linear spectra.[1-3]

Hybrid two-dimensional (2D) Raman-THz spectroscopy is a novel 2D spectroscopic technique,
developed in our group, to study directly the dynamics and coupling of such motions. So far, 2D
Raman-THz spectroscopy has been successfully applied to investigate the dynamics and correlation
of the intermolecular degrees of freedom in liquid water[4] and aqueous salt solutions[5] through THz
photon echo signals, providing new insights into the inhomogeneity of the system. More recently, the
ability of 2D Raman-THz spectroscopy to observe vibrational couplings in the THz range by
measuring cross-peaks between sharp intramolecular and broad intermolecular vibrational modes of
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halogenated liquids, bromoform (CHBr3) and diiodomethane (CH212), was demonstrated by our
group.[6]

In this talk, I will present some of our recent works[7-10] using 2D Raman-THz spectroscopy as a
direct probe of collective intermolecular interactions in molecular liquids and solids at low
frequencies. To show how the previously demonstrated sensitivity of 2D Raman-THz spectroscopy
toward intra- and intermolecular vibrational couplings, as observed in a model system like CHBr3
[6], can be utilized further to study the structural characteristics of more complex systems, we have
investigated changes in the cross-peak’s signature as a function of MeOH concentration in the CHBr3-
MeOH binary mixture.[7]

To evaluate the ability of hybrid 2D Raman-THz spectroscopy to disentangle such couplings in
molecular crystals, we have studied the 2D Raman-THz response of the crystalline 3-phase of CHBr3
at low temperatures.[8] This study elucidated the mechanism responsible for the observed cross-peak
features by providing new experimental evidence for anharmonic couplings between intra-
/intermolecular vibrational modes.

Finally, to examine the possibility of using this 2D technique to unravel the coupling between phonon
modes in non-centrosymmetric nonlinear crystals, where x(2) is nonzero, we performed 2D Raman-
THz experiments on beta barium borate (BBO) crystals.[10] Through a combination of theoretical
analysis and experimental investigation, we demonstrate that the second-order nonlinear responses
contribute significantly to the measured signal due to the imperfect balancing, thereby overwhelming
the real third-order nonlinear response. More importantly, we show that this strong artifact can be
effectively suppressed by implementing the bias detection scheme. By doing so, we successfully
isolate the desired third-order nonlinear response. Our experimentally recovered 2D Raman-THz
signal for the x-cut BBO crystal reveals a distinct cross-peak feature whose frequency position
strongly suggests the presence of phonon-phonon coupling within this crystal. This promising result
paves the way for further expanding the applicability of 2D Raman-THz spectroscopy, thus facilitating
the exploration of anharmonic phonon couplings in nonlinear crystals.

References:

[1] P. Hamm and J. Savolainen, J. Chem. Phys. 2012, 136, 094516.
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[2] M. A. Allodi, I. A. Finneran, and G. A. Blake, J. Chem. Phys. 2015, 143, 234204.

[3] M. Sajadi, M. Wolf, and T. Kampfrath, Nat. Commun. 2017, 8, 14963.

[4] J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. 2013, 110, 20402-20407. [5] A. Shalit, S. Ahmed, J.
Savolainen, and P. Hamm, Nat. Chem. 2017, 9, 273.

[6] G. Ciardi, A. Berger, P. Hamm, and A. Shalit, J. Phys. Chem. Lett. 2019, 10, 4463-4468. [7] A. Shalit, S. J.
Mousavi, and P. Hamm, J. Phys. Chem. B 2021, 125, 581-586.

[8] S. J. Mousavi, A. Berger, P. Hamm, and A. Shalit, J. Chem. Phys. 2022, 156, 174501. [9] B. Sertcan, S. J.
Mousavi, M. lannuzzi, and P. Hamm, J. Chem. Phys. 2023, 158, 014203.

[10] S. J. Mousavi, A. Shalit, and P. Hamm, "Second-order contributions to third-order signals in 2D Raman-THz
spectroscopy of non-centrosymmetric materials ", In preparation.
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Advancing Biomedical Imaging: Molecular-Specific OCT System for Precision Diagnostics
Abstract:

This presentation explores the groundbreaking Molecular-Specific Optical Coherence Tomography
(OCT) system, aiming to overcome inherent limitations of traditional OCT. While regular OCT excels
in providing high-resolution structural images, it falls short in offering molecular specificity, limiting
its capacity to discern subtle variations in biological samples. To address this limitation, our work
integrates advanced OCT modalities to enhance the capabilities of traditional systems. The talk will
delve into the potential applications of Photothermal (PT)- OCT, highlighting its ability to capture both
structural and functional information simultaneously. By harnessing photothermal contrast, this
technique offers enhanced sensitivity for imaging specific biomolecules and has promising applications
in fields such as cancer research, neurology, and cardiovascular studies. However, as with any emerging
technology, there are challenges to address. The talk will discuss current limitations of PT-OCT,
including optimization of excitation sources, signal processing complexities, and the need for robust
calibration methods. Ongoing research efforts aimed at overcoming these challenges will also be
highlighted. Join us in exploring the exciting frontier of PT-OCT, where we unravel its capabilities,
showcase potential applications, and discuss the ongoing efforts to refine and expand its utility. The
talk will provide valuable insights into the future of biomedical imaging and the role of PT-OCT in
advancing precision diagnostics and understanding complex biological systems.
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Nonlinear Optics of IR and THz Radiation

Department of Physics and School of Electrical Engineering and Computer Science

Abstract:

University of Ottawa, Ottawa ON, Canada

This contribution presents a brief overview of research in infrared and terahertz
nonlinear optics. The talk will include a discussion of early work including difference-
frequency generation, infrared detection by upconversion via sum-frequency generation,
and frequency down-shifting by stimulated Raman scattering [1]. The talk will also
include more recent work including nonlinear optical means for THz generation [2] and
consideration of the extremely largeTHz third-order nonlinear optical response resulting
from phonon resonances [3]).

REFERENCES

1. My favourite reference to early work in nonlinear optics especially from a quantum-electronics
perspective is the review article of W. Kaiser and M. Maier in Laser Handbook, Vol. 2, ed. by F.T.
Arecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) Chap. E2

2. An important example of THz generation through nonlinear optics is the work of Hebling, J., Almési,
G., Kozma, 1.Z., Kuhl, J., Velocity matching by pulse front tilting for large-area THz-pulse generation,
Opt. Express 10, 1161-1166 (2002) and Hebling, J., Yeh, K.-L., Hoffmann, Matthias C., Bartal, B.,
Nelson, K.A., Generation of high-power terahertz pulses by

tilted-pulse-front excitation and their application possibilities, J. Opt. Soc. Am. B 25, B6-B19 (2008).

3. My recent work on THz science is included in the following research papers
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